New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Indoor User Localization Using Visual Place Recognition

New York Tech Editorial Team by New York Tech Editorial Team
December 22, 2021
in AI & Robotics
0
Indoor User Localization Using Visual Place Recognition
Share on FacebookShare on Twitter

Visual place recognition is one of the cornerstones of computer vision development and robotics. The VPR algorithms’ task is to identify examined locations based on images. The technology can support autonomous robots and the human workforce alike, identifying surroundings and facilitating the execution of desired actions.

Researchers at NeuroSYS harness computer vision algorithms as a part of the developed AR platform, Nsflow, enabling interactive work instructions and hands-on training to identify user positions while undergoing on-site training. In this case, the use of VPR leads to a significant acceleration of onboarding and learning processes due to a reduced need for prior training and supervision.

Locating a person or finding the desired place using GPS is old news already. But what to do when the satellite-based navigation system is inoperable? Indoor positioning systems (IPS) are coming to the rescue. 

When looking for a needle in a haystack, you can make use of various techniques, including beacons, magnetic positioning, inertial measurement units (IMU) with accelerometers and gyroscopes, measuring movement from the last known point, wi-fi-based positioning, or simply – utilize visual markers. 

All the above methods have their flaws (e.g. the need to install markers or beacons, IMU increasing the error of measurement over time and requiring repositioning), outweighing their benefits. The solution answering the crucial problem – general user whereabouts with accuracy to the nearest few meters – turns out to be within the remit of algorithms. 

The process of recognizing places relies on a two-step procedure, creating two databases. Initially, the target place is photographed and certain items, keypoints, are marked by a feature detector to identify characteristic elements of the area. Afterward, the labeled points are compared to a reference image. Once the assessed keypoints are deemed similar enough by a feature matcher, the picture qualifies as showing the same place. 

The image database combines pictures of target locations, in this case, workspaces, and a set of their properties including unique identifiers, followed by local and global descriptors. The other set, the room database, matches singular keypoints with certain areas in the considered space. 

Using SuperPoint, SuperGlue, and netVLAD neural networks from the visual place recognition field, researchers utilized the above process in user localization. The deep neural networks, SuperPoint and SuperGlue, cooperate in feature detection and matching, extracting information from the databases. 

The global descriptors enter the stage

The process calls for global descriptors, serving as vectors distinguishing the place, identifying areas in a way that presents no ambiguities. To fulfill their role, the vectors should be illumination & point-of-view-agnostic – no matter the perspective and lighting conditions, the global descriptors should leave no doubt when distinguishing places in various pictures. 

Additionally, variable objects present in the area of interest should not be bound by global descriptors as features distinguishing places. Items like furniture and equipment are prone to changes (redecoration, dismantling), meaning they can’t define areas through their presence. 

Computer-vision-powered place recognition relies on permanent elements of examined locations, like doors, windows, stairs, and other distinctive items of long-lasting nature. During the research in question, the deep neural network NetVLAD was used for calculations, presenting, as a result, vectors meeting the set requirements. In the process of global descriptor matching, images of the most similar vectors are processed, following calculations of distance between each characteristic anchor point. 

When processing two databases – the room database and the other, containing key points and global descriptors – the system deals with attributes of images. After performing the similarities and shortest distances estimation, the second neural network, SuperGlue, identifies location images. The system using VPR allows for user localization based, in short, on the number of matching key points. 

The algorithms found application in the AI & AR platform, helping users to perform training equipped with smart glasses. VPR enables the trainees’ localization in the workplace, launching appropriate tutorials and guides assigned to particular spots, improving safety, and reducing the need for direct supervision. 

Project co-financed from European Union funds under the European Regional Development Funds as part of the Smart Growth Operational Programme. Project implemented as part of the National Centre for Research and Development: Fast Track.

Credit: Source link

Previous Post

DuckDuckGo developing a robust privacy-focused desktop browser

Next Post

Bleed eSports Obtains $50.8M Investment From Asia Venture Capital

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Bleed eSports Obtains $50.8M Investment From Asia Venture Capital

Bleed eSports Obtains $50.8M Investment From Asia Venture Capital

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

March 19, 2025
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Global Funeral Traditions Meet Technology

Global Funeral Traditions Meet Technology

March 9, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025

Recommended

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

March 19, 2025
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up startupnation Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media