New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Machine-Learning Program Connects to Human Brain and Commands Robots

New York Tech Editorial Team by New York Tech Editorial Team
December 30, 2021
in AI & Robotics
0
Machine-Learning Program Connects to Human Brain and Commands Robots
Share on FacebookShare on Twitter

Researchers at Ecole Polytechnique Fédérale de Lausanne have developed a machine-learning program that can be connected to a human brain and used to command a robot. The program can alter the robot’s movements based on electrical signals from the brain. 

These new advancements could assist tetraplegic patients who are unable to speak or perform movements. It builds upon the great deal of work that has been done in the past to develop systems that help these patients complete tasks on their own. 

The study was published in Communications Biology. 

Prof. Aude Billard is the head of EPFL’s Learning Algorithms and Systems Laboratory. 

“People with a spinal cord injury often experience permanent neurological deficits and severe motor disabilities that prevent them from performing even the simplest tasks, such as grasping an object,” Billard said. “Assistance from robots could help these people recover some of their lost dexterity, since the robot can execute tasks in their place.”

Moving the Robot With Thoughts

Along with José del R. Millán, Prof. Billard and the two research groups developed the computer program, which needs no voice control or touch funcion. The patients can move the robot with just their thoughts.

The researchers started developing the system by first basing it off a robotic arm that had been developed years ago. It can move back and forth from right to left, as well as reposition objects in front of it and get around objects in its path. 

“In our study we programmed a robot to avoid obstacles, but we could have selected any other kind of task, like filling a glass of water or pushing or pulling an object,” Prof. Billard says. 

The researchers then improved the robot’s mechanism for avoiding obstacles so that it would be more precise.

Carolina Gaspar Pinto Ramon Correia is a PhD student at Prof. Billard’s lab. 

“At first, the robot would choose a path that was too wide for some obstacles, taking it too far away, and not wide enough for others, keeping it too close,” says Correia. “Since the goal of our robot was to help paralyzed patients, we had to find a way for users to be able to communicate with it that didn’t require speaking or moving.”

Developing the Algorithm

In order to do this, they had to develop an algorithm that could adjust the robot’s movements based only on a patient’s thoughts. The algorithm was attached to a headcap equipped with electrodes for running EEG scans of a patient’s brain activity.

The patient only needs to look at the robot in order to use the system. When the robot makes an incorrect move, the patient’s brain will emit an “error message” through a clearly identifiable signal, which indicates to the robot that it is doing a wrong action. The robot will not understand why it is receiving the signal at first, but the error message is then fed into the algorithm. The algorithm uses an inverse reinforcement learning approach to figure out what the patient wants and what actions the robot should take. 

The trial-and-error process means the robot tries out different movements to see which is correct, and only three to five attempts are usually required to figure out the right response.

“The robot’s AI program can learn rapidly, but you have to tell it when it makes a mistake so that it can correct its behavior,” says Prof. Millán. “Developing the detection technology for error signals was one of the biggest technical challenges we faced.” 

Iason Batzianoulis is the study’s lead author.

“What was particularly difficult in our study was linking a patient’s brain activity to the robot’s control system — or in other words, ‘translating’ a patient’s brain signals into actions performed by the robot,” Batzianoulis says. “We did that by using machine learning to link a given brain signal to a specific task. Then we associated the tasks with individual robot controls so that the robot does what the patient has in mind.”

The researchers believe that the algorithm could eventually be used to control wheelchairs. 

“For now there are still a lot of engineering hurdles to overcome,” says Prof. Billard. “And wheelchairs pose an entirely new set of challenges, since both the patient and the robot are in motion.”

Credit: Source link

Previous Post

Speeding up directed evolution of molecules in the lab using a new robotic platform

Next Post

What to Expect at CES 2022: Robots, TVs, GPUs, Cars, and More

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post

What to Expect at CES 2022: Robots, TVs, GPUs, Cars, and More

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Recommended

New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media