New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

An AI Method to Reveal ‘Shielded’ PIN Entries at ATMs

New York Tech Editorial Team by New York Tech Editorial Team
October 18, 2021
in AI & Robotics
0
An AI Method to Reveal ‘Shielded’ PIN Entries at ATMs
Share on FacebookShare on Twitter

Researchers in Italy and the Netherlands have developed a machine learning method capable of inferring the PIN number that a bank customer puts into an ATM, based on captured video – even in cases where the customer shields their hand to protect against shoulder-surfing.

The method involves training a Convolutional Neural Network (CNN) and a Long Short-Term Memory (LSTM) module on videos of ‘covered hand’ PIN entries at a ‘shadow’ ATM that has been fitted with the same keypad as the target ATM – equipment that can be purchased, as the researchers were able to do for the project, recreating a ‘mirror’ ATM in order to gather the data.

The fake ATM can be trained in private, as the researchers have done, obviating the risk of public installations of fake ATMs, a common modus operandi in this particular type of crime.

Two pin pad models used for the Italian research. Right, the 'shadow' ATM. Source: https://arxiv.org/pdf/2110.08113.pdf

Left, two pin pad models used for the Italian research. Pictured right, the ‘shadow’ ATM that the researchers constructed in laboratory conditions. Source: https://arxiv.org/pdf/2110.08113.pdf

The system, which keys on hand movements and positioning during PIN input, can currently predict 41% of 4-digit pins and 30% of 5-digit PIN numbers inside three attempts (generally the maximum number of attempts a bank will allow before locking the customer’s account). Tests involved 58 volunteers using random PIN numbers.

The research, whose data is publicly available, finds that the proposed system offers a four-fold improvement on a human’s ability to guess a PIN by shoulder-surfing a victim.

The paper is titled Hand Me Your PIN! Inferring ATM PINs of Users Typing with a Covered Hand, and comes from five researchers at the University of Padua, and one from the Delft University of Technology.

The researchers excluded captures where the subjects did not adequately cover the PIN pad (left).

The researchers excluded captures where the subjects did not adequately cover the PIN pad (left).

The researchers contend that their system achieves superior results to prior work that keys on timing, sound and thermal signatures, without a video analysis component.

They also note that increased awareness of ‘skimming’ devices center around the card input slot, since this is a traditional method of attack, and that customers have no reason to believe that any similarly-hidden micro-cameras could ‘see through’ their covered hands, or that the generic clatter of keys and the identical feedback sound for each key-press could disclose any information.

The ‘additional’ equipment of the ATM would therefore appear in a place where no-one is currently expecting it, under the upper interior surface of the ATM recess, as a molded enclosure concealing the camera equipment – or even entirely outside the ATM surface, attached to a nearby building or post.

PIN Money

Despite the severe consequences of a breach, PIN numbers are among the shortest and most easily guessable passwords we use; it’s been estimated that an attacker already has a 1-in-10 chance of guessing a PIN correctly. Social engineering isn’t even always a necessary adjunct to more sophisticated AI-based attacks, since 1234 has been estimated to represent 11% of all pins, while 19 (as the first part of a birth year) represents the first two numbers in over 80% of PIN numbers.

Nonetheless, the authors of the new paper have not given themselves this advantage, but rather have set out to investigate whether the hand-wriggling of ‘shielded’ PIN entries has a decipherable pattern that can indicate which numbers are being pressed.

To establish a baseline, the researchers constructed a fake ATM for the purposes of data-gathering (see first image above). This represents the proposed hypothetical attack method, where a malefactor will passively analyze typical PIN input characteristics over a long period of time to prepare for a later ‘swoop’ on accounts.

Though this very ‘studied’ approach is common in sophisticated ATM fraud crime, with many instances of bogus ATMs exfiltrating customer data over a long period, in this case the attacker can set up the fake ATM in their own space, and train it without public input.

Since the ATM’s screen is not likely to be concealed during PIN input, the timing of a key press can be established by synchronizing hand movements to the appearance of the ‘masked’ digits (usually asterisks) that appear in the ATM screen in response to user input, and also to generic feedback noises (such as beeps) that coincide with the strokes. This synchronization reveals the exact hand disposition in a ‘shielded’ scenario at the moment of input.

Targeting Specific Keypads

First, a model must be developed by observation and recording of shielded PIN inputs. Ideally, the keypad should be a specific industry standard model, though some variation of millimeters will not stop the method working. Key-press timings can be obtained by audio and visual cues (i.e. feedback beeps, key clatter, and asterisk feedback).

With these breakpoints, the attacker can automate the extraction of a training set and go on to train a model capable of identifying representative hand configurations for the pressing of a specific key. This will produce a ranked list of probabilities for the card’s PIN, out of which the top three will be selected for the attack when authentic customer data is identified by the system in a real-world scenario.

Methodology

Data gathering was conducted over two sessions, using right-handed volunteers for the study. Each participant typed 100 randomly-generated 5-digit PIN numbers, to ensure even coverage of all ten possible keypad presses. In this way, the researchers gathered 5,800 individual PIN entries.

PIN pads used in the tests were the DAVO LIN Model D-8201F and the DAVO LIN Model D-8203 B models. They’re commercial models used in ATMs, and are available, respectively, here and here (among numerous other vendors).

The gathered video segments were converted to grayscale and normalized and cropped, before being resized to 250×250 pixels for inclusion in the machine learning training sessions. Clips were segmented to obtain sub-sequences of frames pertaining to key presses. Audio cues (as mentioned above) were used as timestamp markers for press events.

Training

The datasets were split into training, validation and test sets, with the training taking place on a Xeon(R) Intel CPU running at E5-2670 2.60GHz, and equipped with 128GB of RAM. The data was implemented on Keras2.3.0-tf (TensorFlow 2.2.0) and Python 3.8.6 on three Tesla K20m GPUs with 5gb of VRAM each.

To account for variability in capture environments (lighting, slight differences in camera angles, etc.), synthetic examples and perturbations (such as rotation and view shift) were generated, and the authors report that this kind of data augmentation is a great aide in improving the effectiveness of the model.

Results

The model was tested against three scenarios: ‘single PIN pad’, where the attacker knows the model of pin pad, and trains specifically for it; ‘PIN pad independent’, where the model is trained on a pad that’s similar (but not identical) to the target PIN pad; and a ‘mixed scenario’, where the attacker has a copy of both PIN pads.

General results across the three scenarios, where Top-N signifies a guess of the digit within N attempts.

General results across the three scenarios, where Top-N signifies a guess of the digit within N attempts.

There’s a noted difference in accuracy for inference of 5-digit versus 4-digit PINs:

Countermeasures

In considering countermeasures to existing systems (i.e. without a radical rethink of the entire PIN/ATM security infrastructure), the researchers consider that there are no really workable defenses against this kind of attack.

Lengthening the minimum required numbers in a PIN will make the numbers more difficult to remember; randomizing the order of the numbers keypad with a touch-screen software keyboard, though increasingly happening in ATM deployments, also produces usability issues; and screen protectors would not only be expensive to deploy on existing ATMs, but would arguably make the paper’s attack method even easier to implement, depending on how much coverage it might give. The researchers assert that their attack is workable even where 75% of the PIN pad is covered (and covering more would make it difficult for the customer to type).

In devising a human-based equivalent to the automated PIN extraction, real people were, by contrast, only able to achieve a fraction of the AI system’s accuracy in guessing PINs, based on the same information.

In future development of the work, the researchers intend to examine results from non-right handed people, and to investigate hand-covering strategies that might mitigate the attack. They also intend to repeat the experiments with a greater diversity of ages and races, since they observe that older people make more significant and telling hand movements when entering a PIN, and that the attack ‘will have difficulties working for people from other races’ (than Caucasian).

 

Credit: Source link

Previous Post

A robot that finds lost items

Next Post

Asset manager Azimut and Gellify launch $50m VC fund for Mena start-ups

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Asset manager Azimut and Gellify launch $50m VC fund for Mena start-ups

Asset manager Azimut and Gellify launch $50m VC fund for Mena start-ups

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Strengthening Cloud Security With Automation

May 22, 2025
How Local IT Services in Anderson Can Boost Your Business Efficiency

Why VPNs Are a Must for Entrepreneurs in Asia

May 22, 2025

Recommended

Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media