New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Bias and Fairness of AI-Based Systems Within Financial Crime

New York Tech Editorial Team by New York Tech Editorial Team
August 24, 2022
in AI & Robotics
0
Bias and Fairness of AI-Based Systems Within Financial Crime
Share on FacebookShare on Twitter

When it comes to fighting financial crime, challenges exist that go beyond the scope of merely stopping fraudsters or other bad actors.

Some of the newest, advanced technologies that are being launched often have their own specific issues that must be considered during adoption stages to successfully fight fraudsters without regulatory repercussions. In fraud detection, model fairness and data bias can occur when a system is more heavily weighted or lacking representation of certain groups or categories of data. In theory, a predictive model could erroneously associate last names from other cultures with fraudulent accounts, or falsely decrease risk within population segments for certain type of financial activities.

Biased AI systems can represent a serious threat when reputations may be affected and occurs when available data is not representative of the population or phenomenon of exploration. This data does not include variables that properly capture the phenomenon we want to predict. Or alternatively the data could include content produced by humans which may contain bias against groups of people, inherited by cultural and personal experiences, leading to distortions when making decisions. While at first data might seem objective, it is still collected and analyzed by humans, and can therefore be biased.

While there isn’t a silver bullet when it comes to remediating the dangers of discrimination and unfairness in AI systems or permanent fixes to the problem of fairness and bias mitigation in architecting machine learning model and use, these issues must be considered for both societal and business reasons.

Doing the Right Thing in AI

Addressing bias in AI-based systems is not only the right thing, but the smart thing for business — and the stakes for business leaders are high. Biased AI systems can lead financial institutions down the wrong path by allocating opportunities, resources, information or quality of service unfairly. They even have the potential to infringe on civil liberties, pose a detriment to the safety of individuals, or impact a person’s well-being if perceived as disparaging or offensive.

It’s important for enterprises to understand the power and risks of AI bias. Although often unknown by the institution, a biased AI-based system could be using detrimental models or data that exposes race or gender bias into a lending decision. Information such as names and gender could be proxies for categorizing and identifying applicants in illegal ways. Even if the bias is unintentional, it still puts the organization at risk by not complying with regulatory requirements and could lead to certain groups of people being unfairly denied loans or lines of credit.

Currently, organizations don’t have the pieces in place to successfully mitigate bias in AI systems. But with AI increasingly being deployed across businesses to inform decisions, it’s vital that organizations strive to reduce bias, not just for moral reasons, but to comply with regulatory requirements and build revenue.

“Fairness-Aware” Culture and Implementation

Solutions that are focused on fairness-aware design and implementation will have the most beneficial outcomes. Providers should have an analytical culture that considers responsible data acquisition, handling, and management as necessary components of algorithmic fairness, because if the results of an AI project are generated by biased, compromised, or skewed datasets, affected parties will not adequately be protected from discriminatory harm.

These are the elements of data fairness that data science teams must keep in mind:

  • Representativeness:Depending on the context, either underrepresentation or overrepresentation of disadvantaged or legally protected groups in the data sample may lead to the systematic disadvantaging the vulnerable parties in the outcomes of the trained model. To avoid such kinds of sampling bias, domain expertise will be crucial to assess the fit between the data collected or acquired and the underlying population to be modeled. Technical team members should offer means of remediation to correct for representational flaws in the sampling.
  • Fit-for-Purpose and Sufficiency: It’s important in understanding if the data collected is sufficient for the intended purpose of the project. Insufficient datasets may not equitably reflect the qualities that should be weighed to produce a justified outcome that is consistent with the desired purpose of the AI system. Accordingly, members of the project team with technical and policy competencies should collaborate to determine if the data quantity is sufficient and fit-for-purpose.
  • Source Integrity and Measurement Accuracy:Effective bias mitigation starts at the very beginning of data extraction and collection processes. Both the sources and tools of measurement may introduce discriminatory factors into a dataset. To secure discriminatory non-harm, the data sample must have an optimal source integrity. This involves securing or confirming that the data gathering processes involved suitable, reliable, and impartial sources of measurement and robust methods of collection.
  • Timeliness and Recency: If the datasets include outdated data, then changes in the underlying data distribution may adversely affect the generalizability of the trained model. Provided these distributional drifts reflect changing social relationship or group dynamics, this loss of accuracy regarding actual characteristics of the underlying population may introduce bias into the AI system. In preventing discriminatory outcomes, timeliness, and recency of all elements of the dataset should be scrutinized.
  • Relevance, Appropriateness and Domain Knowledge: The understanding and use of the most appropriate sources and types of data are crucial for building a robust and unbiased AI system. Solid domain knowledge of the underlying population distribution, and of the predictive goal of the project, is instrumental for selecting optimally relevant measurement inputs that contribute to the reasonable resolution of the defined solution. Domain experts should collaborate closely with data science teams to assist in determining optimally appropriate categories and sources of measurement.

While AI-based systems assist in decision-making automation processes and deliver cost savings, financial institutions considering AI as a solution must be vigilant to ensure biased decisions are not taking place. Compliance leaders should be in lockstep with their data science team to confirm that AI capabilities are responsible, effective, and free of bias. Having a strategy that champions responsible AI is the right thing to do, and it may also provide a path to compliance with future AI regulations.

Credit: Source link

Previous Post

Fathom and Reask for Combined Wind & Flood Risk Models

Next Post

SolarWinds Hackers Using New Post-Exploitation Backdoor ‘MagicWeb’

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
SolarWinds Hackers Using New Post-Exploitation Backdoor ‘MagicWeb’

SolarWinds Hackers Using New Post-Exploitation Backdoor 'MagicWeb'

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025
Magnus Almqvist, new CEO of Exberry

Exberry Appoints Magnus Almqvist as CEO to Drive Next Phase of Strategic Growth

March 5, 2025
Expert Family Law Firms in New York: Your Essential Guide to Legal Help

Expert Family Law Firms in New York: Your Essential Guide to Legal Help

March 3, 2025

Recommended

Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up startupnation Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media