New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Explainability Can Address Every Industry’s AI Problem: The Lack of Transparency

New York Tech Editorial Team by New York Tech Editorial Team
December 19, 2022
in AI & Robotics
0
Explainability Can Address Every Industry’s AI Problem: The Lack of Transparency
Share on FacebookShare on Twitter

By: Migüel Jetté, VP of R&D Speech, Rev.

In its nascent stages, AI may have been able to rest on the laurels of newness. It was okay for machine learning to learn slowly and maintain an opaque process where the AI’s calculation is impossible for the average consumer to penetrate. That’s changing. As more industries such as healthcare, finance and the criminal justice system begin to leverage AI in ways that can have real impact on peoples’ lives, more people want to know how the algorithms are being used, how the data is being sourced, and just how accurate its capabilities are. If companies want to stay at the forefront of innovation in their markets, they need to rely on AI that their audience will trust. AI explainability is the key ingredient to deepen that relationship.

AI explainability differs from standard AI procedures because it offers people a way to understand how the machine learning algorithms create output. Explainable AI is a system that can provide people with potential outcomes and shortcomings. It’s a machine learning system that can fulfill the very human desire for fairness, accountability and respect for privacy. Explainable AI is imperative for businesses to build trust with consumers.

While AI is expanding, AI providers need to understand that the black box can’t. Black box models are created directly from the data and oftentimes not even the developer who created the algorithm can identify what drove the machine’s learned habits. But the conscientious consumer doesn’t want to engage with something so impenetrable it can’t be held accountable. People want to know how an AI algorithm arrives at a specific result without the mystery of sourced input and controlled output, especially when AI’s miscalculations are often due to machine biases. As AI becomes more advanced, people want access to the machine learning process to understand how the algorithm came to its specific result. Leaders in every industry must understand that sooner or later, people will no longer prefer this access but demand it as a necessary level of transparency.

ASR systems such as voice-enabled assistants, transcription technology and other services that convert human speech into text are especially plagued by biases. When the service is used for safety measures, mistakes due to accents, a person’s age or background, can be grave mistakes, so the problem has to be taken seriously. ASR can be used effectively in police body cams, for example, to automatically record and transcribe interactions — keeping a record that, if transcribed accurately, could save lives. The practice of explainability will require that the AI doesn’t just rely on purchased datasets, but seeks to understand the characteristics of the incoming audio that might contribute to errors if any exist. What is the acoustic profile? Is there noise in the background? Is the speaker from a non English-first country or from a generation that uses a vocabulary the AI hasn’t yet learned? Machine learning needs to be proactive in learning faster and it can start by collecting data that can address these variables.

The necessity is becoming obvious, but the path to implementing this methodology won’t always have an easy solution. The traditional answer to the problem is to add more data, but a more sophisticated solution will be necessary, especially when the purchased datasets many companies use are inherently biased. This is because historically, it’s been difficult to explain a particular decision that was rendered by the AI and that’s due to the nature of the complexity of the end-to-end models. However, we can now, and we can start by asking how people lost trust in AI in the first place.

Inevitably, AI will make mistakes. Companies need to build models that are aware of potential shortcomings, identify when and where the issues are happening, and create ongoing solutions to build stronger AI models:

  1. When something goes wrong, developers are going to need to explain what happened and develop an immediate plan for improving the model to decrease future, similar mistakes.
  2. For the machine to actually know whether it was right or wrong, scientists need to create a feedback loop so that AI can learn its shortcomings and evolve.
  3. Another way for ASR to build trust while the AI is still improving is to create a system that can provide confidence scores, and offer reasons as to why the AI is less confident. For example, companies typically generate scores from zero to 100 to reflect their own AI’s imperfections and establish transparency with their customers. In the future, systems may provide post-hoc explanations for why the audio was challenging by offering more metadata about the audio, such as perceived noise level or a less understood accent.

Additional transparency will result in better human oversight of AI training and performance. The more we are open about where we need to improve, the more accountable we are to taking action on those improvements. For example, a researcher may want to know why erroneous text was output so they can mitigate the problem, while a transcriptionist may want evidence as to why ASR misinterpreted the input to help with their assessment of its validity. Keeping humans in the loop can mitigate some of the most obvious problems that arise when AI goes unchecked. It can also speed up the time required for AI to catch its errors, improve and eventually correct itself in real time.

AI has the capabilities to improve people’s lives but only if humans build it to produce properly. We need to hold not only these systems accountable but also the people behind the innovation. AI systems of the future are expected to adhere to the principles set forth by people, and only until then will we have a system people trust. It’s time to lay the groundwork and strive for those principles now while it’s ultimately still humans serving ourselves.

Credit: Source link

Previous Post

Peech 2.0, Video Marketing at Scale, and Building a Content Marketing Machine

Next Post

Top American Online Ed Platform Leaks 22TB of Data

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Top American Online Ed Platform Leaks 22TB of Data

Top American Online Ed Platform Leaks 22TB of Data

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025
Magnus Almqvist, new CEO of Exberry

Exberry Appoints Magnus Almqvist as CEO to Drive Next Phase of Strategic Growth

March 5, 2025
Expert Family Law Firms in New York: Your Essential Guide to Legal Help

Expert Family Law Firms in New York: Your Essential Guide to Legal Help

March 3, 2025

Recommended

Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up startupnation Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media