New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Luxo, Jr. and Mystique inspire novel approaches to shapeshifting materials

New York Tech Editorial Team by New York Tech Editorial Team
October 22, 2021
in AI & Robotics
0
Luxo, Jr. and Mystique inspire novel approaches to shapeshifting materials
Share on FacebookShare on Twitter
Harvard scientists built
Enlarge / Harvard scientists built “Totimorphic” structural materials that can adopt and maintain any possible shape. Scientists at Case Western Reserve University and Tufts University are exploring shapeshifting liquid crystals.

Aurich Lawson/Harvard/Case Western Reserve

Luxo, Jr., Pixar’s trademark animated Luxo balanced-arm lamp, is based on a classic design known as the anglepoise lamp, invented by British designer George Carwardine in 1932. Almost ninety years later, the anglepoise lamp has helped inspire a novel approach to building multifunctional shapeshifting materials for robotics, biotechnology, and architectural applications, according to a new paper published in the Proceedings of the National Academy of Sciences.

Meanwhile, physicists at Case Western Reserve University and Tufts University have stumbled on another promising approach to creating novel shapeshifting materials. The researchers remotely manipulated the ordinarily flat surface of a liquid crystal without any kind of external stimulus (such as pressure or heat), changing its physical appearance merely with the nearby presence of a bumpy surface. It’s early days, but the researchers suggest their approach could someday enable materials that can shapeshift with the ease of The X-Men‘s Mystique. They described their work in a new paper published in the journal Physical Review Letters.

Developing novel shapeshifting materials is a very active area of research because there are so many promising applications, such as building artificial muscles—manmade materials, actuators, or similar devices that mimic the contraction, expansion, and rotation (torque) characteristics of the movement of natural muscle. For instance, in 2019, a team of Japanese researchers spiked a crystalline organic material with a polymer to make it more flexible, demonstrating their proof of concept by using their material to make an aluminum foil paper doll do sit-ups. Most artificial muscles are designed to respond to electric fields (such as electroactive polymers), changes in temperature (such as shape-memory alloys and fishing line), and changes in air pressure via pneumatics.

Advertisement

Later that same year, MIT scientists created a class of so-called “4D materials” that employ the same manufacturing technique as 3D printing but which are designed to deform over time in response to changes in the environment, like humidity and temperature. They’re also sometimes known as active origami or shape-morphing systems.

The MIT structures can transform into much more complicated structures than had previously been achieved, including a human face. These kinds of shapeshifting materials might one day be used to make tents that can unfold and inflate on their own, just by changing the temperature (or other ambient conditions). Other potential uses include deformable telescope lenses, stents, scaffolding for artificial tissue, and soft robotics.

Harvard researchers have developed a shapeshifting material that can take and hold any possible shape.
Enlarge / Harvard researchers have developed a shapeshifting material that can take and hold any possible shape.

Harvard SEAS/CC BY

T is for Totimorphic

What’s unique about the latest research from the Harvard team is that their assemblies of interlocking blocks, or cells, can take on and maintain any number of configurations; most shapeshifting materials are limited to just a handful. That’s why they are called “totimorphic” structural materials.

“Today’s shapeshifting materials and structures can only transition between a few stable configurations, but we have shown how to create structural materials that have an arbitrary range of shape-morphing capabilities,” said co-author L Mahadevan of Harvard’s John A. Paulson School of Engineering and Applied Sciences (SEAS). “These structures allow for independent control of the geometry and mechanics, laying the foundation for engineering functional shapes using a new type of morphable unit cell.”

The trick to any shapeshifting material is to find the sweet spot where both rigidity and elasticity (or conformability) are optimized. If a material has too much conformability, it can’t maintain the different shapes it adopts because the configuration won’t be stable. If a material is too rigid, it won’t be able to take on new configurations at all. That’s where the anglepoise lamp comes in. The lamp head “is infinitely morphable by virtue of its having a set of opposing springs in tension that change their lengths while the total energy remains constant,” the authors wrote.

Advertisement

In other words, Luxo Jr.’s head will remain stable in any position because its springs will stretch and compress however they need to in order to counteract the force of gravity. The technical term is a “neutrally stable structure”: a structure in which the rigid and elastic elements are ideally balanced, enabling them to transition between an infinite number of positions or orientations while still remaining stable in all of them. Mahadevan and his colleagues essentially built an assembly using individual switchable hinges as building blocks to get the same balance between rigidity and conformability.

Harvard researchers dubbed this material “totimorphic” because of its ability to morph into any stable shape. The researchers connected individual unit cells with naturally stable joints, building 2D and 3D structures from individual totimorphic cells.

“By having a neutrally stable unit cell, we can separate the geometry of the material from its mechanical response at both the individual and collective level,” said co-author Gaurav Chaudhary, a postdoctoral fellow at SEAS. “The geometry of the unit cell can be varied by changing both its overall size as well as the length of the single movable strut, while its elastic response can be changed by varying either the stiffness of the springs within the structure or the length of the struts and links.”

As a proof of concept, the team demonstrated that a single sheet of their totimorphic cells could curve up, twist into a helix, bear weight, and even morph into face-like shapes. “We show that we can assemble these elements into structures that can take on any shape with heterogeneous mechanical responses,” said co-author S. Ganga Prasath, another SEAS postdoctoral fellow. “Since these materials are grounded in geometry, they could be scaled down to be used as sensors in robotics or biotechnology or could be scaled up to be used at the architectural scale.

Credit: Source link

Previous Post

Twitter’s research shows that its algorithm favors conservative views

Next Post

Cash-offer fintech UpEquity scores $50 million in funding

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Cash-offer fintech UpEquity scores $50 million in funding

Cash-offer fintech UpEquity scores $50 million in funding

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

March 19, 2025
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025
Global Funeral Traditions Meet Technology

Global Funeral Traditions Meet Technology

March 9, 2025
Canditech website

Canditech is Revolutionizing Hiring With Their New Product

March 9, 2025

Recommended

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

The Future of “I Do”: How Technology is Revolutionizing Weddings in 2025

March 19, 2025
Eldad Tamir

AI vs. Traditional Investing: How FINQ’s SEC RIA License Signals a New Era in Wealth Management

March 17, 2025
Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

Overcoming Payment Challenges: How Waves Audio Streamlined Transactions with BridgerPay

March 16, 2025
Arvatz and Iyer

PointFive and Emertel Forge Strategic Partnership to Elevate Enterprise FinOps in ANZ

March 13, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up startupnation Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media