New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Machine learning vs. Deep learning – Key Differences

New York Tech Editorial Team by New York Tech Editorial Team
January 6, 2023
in AI & Robotics
0
Machine learning vs. Deep learning – Key Differences
Share on FacebookShare on Twitter

Terminologies like Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning are hype these days. People, however, often use these terms interchangeably. Although these terms highly co-relate with each other, they also have distinctive features and specific use cases.

AI deals with automated machines that solve problems and make decisions imitating human cognitive capabilities. Machine learning and deep learning are the subdomains of AI. Machine Learning is an AI that can make predictions with minimal human intervention. Whereas deep learning is the subset of machine learning that uses neural networks to make decisions by mimicking the neural and cognitive processes of the human mind.

The above image illustrates the hierarchy. We will continue with explaining the differences between machine learning and deep learning. It will also help you choose the suitable methodology based on its application and area of focus. Let’s discuss this in detail.

Machine Learning in a Nutshell

Machine learning allows experts to “train” a machine by making it analyze massive datasets. The more data the machine analyzes, the more accurate results it can produce by making decisions and predictions for unseen events or scenarios.

Machine learning models need structured data to make accurate predictions and decisions. If the data is not labeled and organized, machine learning models fail to comprehend it accurately, and it becomes a domain of deep learning.

The availability of gigantic data volumes in organizations has made machine learning an integral component of decision-making. Recommendation engines are the perfect example of machine learning models. OTT services like Netflix learn your content preferences and suggest similar content based on your search habits and watch history.

To understand how machine learning models are trained, let’s first look at types of ML.

There are four types of methodologies in machine learning.

  • Supervised learning – It needs labeled data to give accurate results. It often requires learning more data and periodic adjustments to improve outcomes.
  • Semi-supervised – It’s a middle tier between supervised & unsupervised learning that exhibits the functionality of both domains. It can give results on partially labeled data and doesn’t require ongoing adjustments to give accurate results.
  • Unsupervised learning – It discovers patterns and insights in datasets without human intervention and gives accurate results. Clustering is the most common application of unsupervised learning.
  • Reinforcement learning – The reinforcement learning model requires constant feedback or reinforcement as new information comes to give accurate results. It also uses a “Reward Function” that enables self-learning by rewarding desired outcomes and penalizing wrong ones.

Deep Learning in a Nutshell

Machine learning models need human intervention to improve accuracy. On the contrary, deep learning models improve themselves after each result without human supervision. But it often requires more detailed and lengthy volumes of data.

The deep learning methodology designs a sophisticated learning model based on neural networks inspired by the human mind. These models have multiple layers of algorithms called neurons. They continue to improve without human intervention, like the cognitive mind that keeps improving and evolving with practice, revisits, and time.

Deep learning models are mainly used for classification and feature extraction. For instance, deep models feed on a dataset in facial recognition. The model creates multidimensional matrices to memorize each facial feature as pixels. When you ask it to recognize a picture of a person it was not exposed to, it easily recognizes it by matching limited facial features.

  • Convolutional Neural Networks (CNN) – Convolution is the process of assigning weights to different objects of an image. Based on these assigned weights, the CNN model recognizes it. The results are based on how close these weights are to the object’s weight fed as a train set.
  • Recurrent Neural Network (RNN) – Unlike CNN, the RNN model revisits the previous results and data points to make more accurate decisions and predictions. It’s an actual replica of human cognitive functionality.
  • Generative Adversarial Networks (GANs) –  The two classifiers in GAN, the generator & discriminator, access the same data. The generator produces fake data by incorporating feedback from the discriminator. The discriminator tries to classify whether a given data is real or fake.

Salient Differences

Below are some notable differences.

Differences Machine Learning Deep Learning
Human Supervision Machine learning requires more supervision. Deep learning models require almost no human supervision after development.
Hardware Resources You build and run Machine learning programs on a powerful CPU. Deep learning models require more powerful hardware, like dedicated GPUs.
Time & Effort The time required to set up a Machine learning model is less than deep learning, but its functionality is limited. It requires more time to develop and train data with deep learning. Once created, it continues to improve its accuracy with time.
Data (structured/unstructured) Machine learning models need structured data to give results (except unsupervised learning) and require continuous human intervention for improvement. Deep learning models can process unstructured and complex datasets without compromising accuracy.
Use-cases eCommerce websites and streaming services that use recommendation engines. High-end applications like Autopilot in planes, self-driving vehicles, Rovers on the Martian surface, face recognition, etc.

Machine Learning vs. Deep Learning – Which one is best?

The choice between machine learning vs. deep learning is genuinely based on their use cases. Both are used to make machines with near-human intelligence. The accuracy of both models depends on whether you are using the relevant KPIs and data attributes.

Machine learning and deep learning will become routine business components across industries. Undoubtedly, AI will fully automate industries activities like aviation, warfare, and cars in the near future.

If you want to know more about AI and how it continuously revolutionizes business outcomes, read more articles on unite.ai.

Credit: Source link

Previous Post

Fintech Industry Must Transform to Help Underserved Communities

Next Post

Trend Micro establishes new subsidiary for 5G cybersecurity

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Open source intelligence team launches DarkInvader to provide early warning of data breaches

Trend Micro establishes new subsidiary for 5G cybersecurity

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Strengthening Cloud Security With Automation

May 22, 2025
How Local IT Services in Anderson Can Boost Your Business Efficiency

Why VPNs Are a Must for Entrepreneurs in Asia

May 22, 2025

Recommended

Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media