New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

Product Title Matching For SKU Management With NLP

New York Tech Editorial Team by New York Tech Editorial Team
February 14, 2022
in AI & Robotics
0
Product Title Matching For SKU Management With NLP
Share on FacebookShare on Twitter

A quick dive into how you can automate product data matching and SKU management using just product titles with NLP.

Product title matching is the process of matching similar or exact products from different sources based strictly on the title and other headline attributes of the product. As data variance and data sources grow in an organization it can become harder to keep product data accurate and manage new SKUs. Issues come up when using different suppliers and vendors and keeping high quality product data becomes harder. This can cause issues when evaluating sales data and understanding your marketing efforts and the success rate. 

While this is often done manually it can become extremely time consuming and scales poorly. Old school systems focused on just using basic product attributes like SKUs and UPC codes that do not work well with modern unstructured data. These older systems require auxiliary processes to extract attributes, remove duplicates, and clean stop words from the unstructured product data. Even with all the data cleansing and keyword extraction these systems still struggle with things like this:

GIGABYTE – 15.6″ FHD IPS 144Hz Gaming Laptop – i5-11400H – 16GB – NVIDIA GeForce RTX 3050 512 GB SSD

And

15.6″ Notebook – i5-11400H – 16GB – GeForce RTX 3050 512 GB Black 6494784

To understand word relationships such as “laptop” and “notebook”, and part of speech keys to match GeForce we’ll need to use natural language processing. 

What Product Title Matching Can Provide For You

Product data matching based on title provides retailers and ecommerce brands a ton of benefits in the world of sales data and marketing intelligence. 

  • Organize products and SKUs across multiple vendors and suppliers
  • Use competitor data to understand market trends and competitive pricing
  • Understand product life cycle 
  • Ensure there are no missing pieces in your sales data and marketing campaigns

Using a product title based matching system allows you to ensure you always have the exact information you need to perform data matching. Other systems that require a ton of data points or in-depth product descriptions can struggle as you scale into more products. We’ve found that using a deep learning based NLP system that focuses on product title allows you to get similar results without the long term scaling risk. We’ve been able to use product title matching as a baseline and build other models around it such as UPC matching and product description matching to simply enhance results, not rely on. 

We’ve built our product title matching software using popular NLP models such as GPT-3, BERT, and SBERT to learn the relationship between different title language features, title attributes such as brand name, product name, type etc. These deep learning based models are far superior above fuzzy matching and other rule based approaches and are proven to scale easily with new data variance and noise. 

Matching between: Garmin nuvi 2699LMTHD — GPS navigator — automotive 6.1 in nuvi 2699LMTHD Automobile Portable GPS Navigator

This result from the NLP software shows a few important things:

  • Stopwords and characters don’t affect our ability to match two product titles
  • The model can the words in the title that matter no matter the order or any noise words are them. 
  • Brand names are not required for us to find matches or decline a match. 
  • Product attributes are not required (size, length) in each product we’re comparing and don’t have to be the same type. 

The product title model picks up on small but important differences between container sizes that are considered different SKUs in the product database. In the second example we see there are a bunch of moving parts – different bottle counts and unstructured data noise but still an easy match. 

Refining For Production Use Case

This product title matching software product can be fine-tuned on a retail store or ecommerce brand’s actual product data to push the accuracy past other products for your specific use case. This level of customization is available because of the language model architecture used to build the product title matcher, instead of using gimmicky fuzzer matchers or entity extraction models. The ability to fine-tune the architecture for a specific company’s data allows for better scalability as well as it becomes much easier to adjust to changes in unstructured data as you add more products or sources. 

Relativity In Product Matching

As you might have noticed the idea of product matching can be somewhat relative based on what use case you’re trying to cover. If you’re looking to differentiate products based on SKU you’re going to want different results then if you were trying to understand market size and competitor products. 

For instance if you have these two product titles:

Chios Mastiha Pack 60gr (2.11 oz) Small Tears Gum 100% Natural Mastic Gum From Mastic Growers Fresh

Chios Mastiha Pack 25gr (0.88oz) Medium Tears Gum 100% Natural Mastic Gum From Mastic Growers Fresh

You could consider them not a match based on the idea they have two different SKUs inside the same store, but could also consider them a match based on the idea they are both Mastic Gum. If we now included this product title in the mix:

Horbaach Mastic Gum 1500mg 120 Capsules | Non-GMO & Gluten Free

We have to decide beforehand what we are matching for. This is clearly a competitor’s product and has a different UPC code, but it is still Mastic Gum and if we are just looking for products under the same “umbrella” then this is a match. Lot’s to think about when designing your product data matching systems.

When you’re using an NLP based product title matching tool this level of flexibility becomes a breeze. We simply fine-tune our architecture for your use case no matter what you consider a “match” and optimize towards that. This level of flexibility is a game changer when looking to use the same architecture for many different use cases inside an organization and still reach high accuracy.

Our SKU based pipeline correctly considers this a no match.

Product Data Extraction

Once we’ve already matched product titles and have an understanding of either our internal sales data variance or competitor product data we can use product categorization models or NLP based attribute extraction tools to fill in any data gaps we have such as product size, manufacturer name, and product attributes automatically. These pipelines use the same architecture as our product matching so they can be easily integrated. 

Improve Your Product Taxonomy

Example of generating product categories and tags from our GPT-3 model.

With the product title matching tool you can improve the clarity of your taxonomy by combining multiple matching products attributes together into a single category. This greatly cleans up and standardizes the attributes that make up your taxonomy system.  

GIGABYTE – 15.6″ FHD IPS 144Hz Gaming Laptop – i5-11400H – 16GB – NVIDIA GeForce RTX 3050 512 GB SSD

And

15.6″ Notebook – i5-11400H – 16GB – GeForce RTX 3050 512 GB Black 6494784

Understanding that these are both the same product allows you to fill in any gaps such as putting “Notebook” and “Laptop” in the same category, “NVIDIA” as the manufacturer for both products and so on. This let’s you find miscategorized products and fill in any gaps. 

Product Data Understanding is Key

Think product title matching can help you understand your product data and clean up your sales intelligence? Let’s schedule a demo today at Width.ai. 

Credit: Source link

Previous Post

Austin-based startup Capsll, Inc. completes executive team |

Next Post

Pavel Osokin, Co-Founder & CEO of AMAI – Interview Series

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
Pavel Osokin, Co-Founder & CEO of AMAI – Interview Series

Pavel Osokin, Co-Founder & CEO of AMAI - Interview Series

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Recommended

New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media