New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

These Tiny Liquid Robots Never Run Out of Energy As Long as They Have Food

New York Tech Editorial Team by New York Tech Editorial Team
January 3, 2022
in AI & Robotics
0
These Tiny Liquid Robots Never Run Out of Energy As Long as They Have Food
Share on FacebookShare on Twitter
Liquid Robots

Artist’s rendering of autonomous, continuous “liquid robots” in an animated GIF. Credit: Jenny Nuss/Berkeley Lab

By removing electricity from equation, discovery overcomes yearslong hurdle in robotics.

When you think of a robot, images of R2-D2 or C-3PO might come to mind. But robots can serve up more than just entertainment on the big screen. In a lab, for example, robotic systems can improve safety and efficiency by performing repetitive tasks and handling harsh chemicals.

But before a robot can get to work, it needs energy – typically from electricity or a battery. Yet even the most sophisticated robot can run out of juice. For many years, scientists have wanted to make a robot that can work autonomously and continuously, without electrical input.

Now, as reported recently in the journal Nature Chemistry, scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of Massachusetts Amherst have demonstrated just that – through “water-walking” liquid robots that, like tiny submarines, dive below water to retrieve precious chemicals, and then surface to deliver chemicals “ashore” again and again.

In this short video, liquid robots just 2 millimeters in diameter transport chemicals back and forth while partially submerged in solution. Credit: Ganhua Xie and Tom Russell/Berkeley Lab

The technology is the first self-powered, aqueous robot that runs continuously without electricity. It has potential as an automated chemical synthesis or drug delivery system for pharmaceuticals.

“We have broken a barrier in designing a liquid robotic system that can operate autonomously by using chemistry to control an object’s buoyancy,” said senior author Tom Russell, a visiting faculty scientist and professor of polymer science and engineering from the University of Massachusetts Amherst who leads the Adaptive Interfacial Assemblies Towards Structuring Liquids program in Berkeley Lab’s Materials Sciences Division.

Russell said that the technology significantly advances a family of robotic devices called “liquibots.” In previous studies, other researchers demonstrated liquibots that autonomously perform a task, but just once; and some liquibots can perform a task continuously, but need electricity to keep on running. In contrast, “we don’t have to provide electrical energy because our liquibots get their power or ‘food’ chemically from the surrounding media,” Russell explained.

Through a series of experiments in Berkeley Lab’s Materials Sciences Division, Russell and first author Ganhua Xie, a former postdoctoral researcher at Berkeley Lab who is now a professor at Hunan University in China, learned that “feeding” the liquibots salt makes the liquibots heavier or denser than the liquid solution surrounding them.

Additional experiments by co-investigators Paul Ashby and Brett Helms at Berkeley Lab’s Molecular Foundry revealed how the liquibots transport chemicals back and forth.

Because they are denser than the solution, the liquibots – which look like little open sacks, and are just 2 millimeters in diameter – cluster in the middle of the solution where they fill up with select chemicals. This triggers a reaction that generates oxygen bubbles, which like little balloons lift the liquibot up to the surface.

Another reaction pulls the liquibots to the rim of a container, where they “land” and offload their cargo.

The liquibots go back and forth, like the pendulum of a clock, and can run continuously as long as there is “food” in the system.

Depending on their formulation, an array of liquibots could carry out different tasks simultaneously. For example, some liquibots could detect different types of gas in the environment, while others react to specific types of chemicals. The technology may also enable autonomous, continuous robotic systems that screen small chemical samples for clinical applications, or drug discovery and drug synthesis applications.

Russell and Xie next plan to investigate how to scale up the technology for larger systems, and explore how it would work on solid surfaces.

Reference: “Continuous, autonomous subsurface cargo shuttling by nature-inspired meniscus-climbing systems” by Ganhua Xie, Pei Li, Paul Y. Kim, Pei-Yang Gu, Brett A. Helms, Paul D. Ashby, Lei Jiang and Thomas P. Russell, 29 November 2021, Nature Chemistry.
DOI: 10.1038/s41557-021-00837-5

The Molecular Foundry is a nanoscience user facility at Berkeley Lab.

This work was supported by the DOE Office of Science. Additional support was provided by the U.S. Army Research Office.


Credit: Source link

Previous Post

Jerusalem Post and Maariv hacked on Gen. Soleimani’s death anniversary

Next Post

How Data Analytics and AI Solve the Toughest Global Problems

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
How Data Analytics and AI Solve the Toughest Global Problems

How Data Analytics and AI Solve the Toughest Global Problems

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Recommended

New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media