New York Tech Media
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital
No Result
View All Result
New York Tech Media
No Result
View All Result
Home AI & Robotics

AI Algorithm Improves Accuracy and Costs of Medical Image Diagnostics

New York Tech Editorial Team by New York Tech Editorial Team
April 13, 2022
in AI & Robotics
0
AI Algorithm Improves Accuracy and Costs of Medical Image Diagnostics
Share on FacebookShare on Twitter

Medical imaging, which is a major part of modern healthcare, is one of the technologies that has been greatly improved through artificial intelligence (AI). With that said, medical image diagnosis relying on AI algorithms requires large amounts of annotations as supervision signals for model training. 

Radiologists must prepare radiology reports for each of their patients to acquire these accurate labels for the algorithms. They then must rely on annotation staff to extract and confirm structured labels from the reports with human-defined rules and existing natural language processing (NLP) tools. This means the accuracy of extracted labels greatly depends on human work and the NLP tools, and the entire method is both labor intensive and time consuming. 

REEFERS Approach

Now, a team of engineers at the University of Hong Kong (HKU) has developed a new approach called “REEFERS” (Reviewing Free-text Reports for Supervision). This new method can cut human costs by 90% by enabling the automatic acquisition of supervision signals from hundreds of thousands of radiology reports. This results in more accurate predictions.

The new research was published in Nature Machine Intelligence. It is titled “Generalized radiograph representation learning via ross-supervision between images and free-text radiology reports.” 

The REEFERS approach brings us closer to achieving generalized medical AI.

Professor Yu Yizhou is leader of the engineering team at HKU’s Department of Computer Science. 

“We believe abstract and complex logical reasoning sentences in radiology reports provide sufficient information for learning easily transferable visual features. With appropriate training, REFERS directly learns radiograph representations from free-text reports without the need to involve manpower in labeling.” Professor Yu said.

Training the System

To train REEFERS, the team uses a public database with 370,000 X-Ray images, as well as associated radiology reports. The researchers built a radiograph recognition model with just 100 radiographs and achieved 83% accuracy in predictions. The model was then able to achieve an 88.2% accuracy rate when the number was increased to 1,000. When 10,000 radiographs were used, the accuracy rose again to 90.1%. 

REEFERS can achieve the goal by completing two report-related tasks. The first involves the translation of radiographs into text reports by first encoding radiographs into an intermediate representation. This is then used to predict text reports via a decoder network. To measure the similarity between predicted and real report texts, a cost function is defined. 

The second task involves REEFERS first encoding both radiographs and free-text reports into the same semantic space. In this space, representations of each report and associated radiographs are aligned through contrastive learning.

Dr. Zhou Hong-Yu is first author of the paper.

“Compared to conventional methods that heavily rely on human annotations, REFERS has the ability to acquire supervision from each word in the radiology reports. We can substantially reduce the amount of data annotation by 90% and the cost to build medical artificial intelligence. It marks a significant step towards realizing generalized medical artificial intelligence, ” he said. 

Credit: Source link

Previous Post

How to disable Firefox’s Captive Portal test connection on startup

Next Post

You can now try 1Password’s customizable redesign on your iPhone and iPad

New York Tech Editorial Team

New York Tech Editorial Team

New York Tech Media is a leading news publication that aims to provide the latest tech news, fintech, AI & robotics, cybersecurity, startups & leaders, venture capital, and much more!

Next Post
You can now try 1Password’s customizable redesign on your iPhone and iPad

You can now try 1Password’s customizable redesign on your iPhone and iPad

  • Trending
  • Comments
  • Latest
Meet the Top 10 K-Pop Artists Taking Over 2024

Meet the Top 10 K-Pop Artists Taking Over 2024

March 17, 2024
Panther for AWS allows security teams to monitor their AWS infrastructure in real-time

Many businesses lack a formal ransomware plan

March 29, 2022
Zach Mulcahey, 25 | Cover Story | Style Weekly

Zach Mulcahey, 25 | Cover Story | Style Weekly

March 29, 2022
How To Pitch The Investor: Ronen Menipaz, Founder of M51

How To Pitch The Investor: Ronen Menipaz, Founder of M51

March 29, 2022
Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

Japanese Space Industry Startup “Synspective” Raises US $100 Million in Funding

March 29, 2022
UK VC fund performance up on last year

VC-backed Aerium develops antibody treatment for Covid-19

March 29, 2022
Startups On Demand: renovai is the Netflix of Online Shopping

Startups On Demand: renovai is the Netflix of Online Shopping

2
Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

Robot Company Offers $200K for Right to Use One Applicant’s Face and Voice ‘Forever’

1
Menashe Shani Accessibility High Tech on the low

Revolutionizing Accessibility: The Story of Purple Lens

1

Netgear announces a $1,500 Wi-Fi 6E mesh router

0
These apps let you customize Windows 11 to bring the taskbar back to life

These apps let you customize Windows 11 to bring the taskbar back to life

0
This bipedal robot uses propeller arms to slackline and skateboard

This bipedal robot uses propeller arms to slackline and skateboard

0
New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025
The Future of Software Development: Why Low-Code Is Here to Stay

Building Brand Loyalty Starts With Your Team

May 23, 2025
Tork Media Expands Digital Reach with Acquisition of NewsBlaze and Buzzworthy

Creative Swag Ideas for Hackathons & Launch Parties

May 23, 2025

Recommended

New York City

Why Bite-Sized Learning is Booming in NYC’s Hustle Culture

June 4, 2025
Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

Driving Innovation in Academic Technologies: Spotlight from ICTIS 2025

June 4, 2025
Coffee Nova’s $COFFEE Token

Coffee Nova’s $COFFEE Token

May 29, 2025
Money TLV website

BridgerPay to Spotlight Cross-Border Payments Innovation at Money TLV 2025

May 27, 2025

Categories

  • AI & Robotics
  • Benzinga
  • Cybersecurity
  • FinTech
  • New York Tech
  • News
  • Startups & Leaders
  • Venture Capital

Tags

3D bio-printing acoustic AI Allseated B2B marketing Business carbon footprint climate change coding Collaborations Companies To Watch consumer tech crypto cryptocurrency deforestation drones earphones Entrepreneur Fetcherr Finance Fintech food security Investing Investors investorsummit israelitech Leaders LinkedIn Leaders Metaverse news OurCrowd PR Real Estate reforestation software start- up Startups Startups On Demand startuptech Tech Tech leaders technology UAVs Unlimited Robotics VC
  • Contact Us
  • Privacy Policy
  • Terms and conditions

© 2024 All Rights Reserved - New York Tech Media

No Result
View All Result
  • News
  • FinTech
  • AI & Robotics
  • Cybersecurity
  • Startups & Leaders
  • Venture Capital

© 2024 All Rights Reserved - New York Tech Media